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Abstract
The coupling of chiral fermions to gravity makes use only of the selfdual SU(2)

subalgebra of the (complexified) SO(3, 1) algebra. It is possible to identify the
antiselfdual subalgebra with the SU(2)L isospin group that appears in the
standard model, or with its right-handed counterpart SU(2)R that appears in
some extensions. Based on this observation, we describe a form of unification of
the gravitational and weak interactions. We also discuss models with fermions
of both chiralities, the inclusion of strong interactions, and the way in which
these unified models of gravitational and gauge interactions avoid conflict with
the Coleman–Mandula theorem.

PACS numbers: 04.20.Cv, 04.50.Kd, 12.60.Cn, 12.10.Dr

1. Approaches to unification

In particle physics, the word ‘unification’ is used in a narrow sense to describe the following
situation. One starts with two sets of phenomena described by gauge theories with gauge
groups G1 and G2. A unified description of the two sets of phenomena is given by a gauge
theory with a gauge group G containing G1 and G2 as commuting subgroups. In the symmetric
phase of the unified theory, the two sets of phenomena are indistinguishable. The subgroups
G1 and G2, and hence the distinction between the two sets of phenomena, are selected by
the vacuum expectation value (VEV) of an ‘order parameter’, which is usually a multiplet of
scalar fields. The standard model (SM) and its grand unified extensions work this way. On
the other hand, currently popular theories that claim to provide a unification of gravity with
the other interactions do not fit into this general scheme.

It is possible to unify gravity and other Yang–Mills interactions in the sense described
above, if one allows the order parameter to be a set of one-forms instead of scalars [1]. In order
to motivate this, let us begin by considering four one-forms θm

µ (m = 0, 1, 2, 3) transforming
under the ‘internal’ global Lorentz transformations θm

µ → S−1m
nθ

n
µ, which preserve the

internal Minkowski metric η, and the linear coordinate transformations θm
µ → θm

ν�
ν
µ. Let
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us suppose that the dynamics of the theory is such that θ has a constant VEV 〈θm
ν〉 = θ̄m

ν

with

det θ̄m
ν �= 0. (1)

This VEV breaks the original invariances but preserves the global ‘diagonal’ Lorentz
subgroup defined by � = θ̄−1Sθ̄ . Defining θ = θ̄ + h, the matrix [1] H = ηhθ̄−1 (which
has two covariant Latin indices) transforms under the unbroken group as H → ST HS.
Therefore, its symmetric and antisymmetric parts, which have ten and six components,
respectively, are irreducible representations of this unbroken group. On the other hand,
under an infinitesimal internal Lorentz transformation S = 1 + ε, the antisymmetric part of H
gets shifted: H → H − ηε. This is the typical behavior of the Goldstone bosons. As a result,
if the action was invariant under the original transformations, the antisymmetric components
of H would be massless.

Gravity in the first-order formulation is a gauged version of the preceding theory, where
the gauge field is a local Lorentz connection Aµ

m
n, the field θm

µ is the vierbein or soldering
form, defining a metric

gµν = θm
µθn

νηmn, (2)

and its covariant curl is the torsion tensor

�µ
m

ν = ∂µθm
ν − ∂νθ

m
µ + Aµ

m
nθ

n
ν − Aν

m
nθ

n
µ. (3)

As usual in gauge theories, the Goldstone bosons can be gauged away (this corresponds to
choosing the unitary gauge) and their kinetic term generates a mass for the gauge fields in the
‘broken’ directions. For example, if the VEV is θ̄ = M1, i.e. flat space, the term

�m
µν�

nµνηmn (4)

generates a mass term of the form M2(Amnp − Apnm)(Amnp − Apnm). A similar phenomenon
occurs with the Palatini action. We have here a version of the Higgs mechanism, where the
six antisymmetric components of H become the six longitudinal components of the Lorentz
connection. The symmetric components of H cannot be eliminated in this way: after suitably
dealing with the diffeomorphism invariance, they correspond to the graviton field. It is possible
to show that they are also the Goldstone bosons for a larger GL(4) internal symmetry [2]; this
is useful if one wants to discuss more general theories where the connection is allowed not
to be metric, but this will not be needed for the purposes of this paper. The main conclusion
of this discussion is that gravity is a gauge theory in the Higgs (broken) phase, and that a
‘symmetric’ phase would correspond to vanishing θ̄ and hence vanishing metric4.

If one regards the soldering form as an order parameter, one sees that gravity is unification-
ready. One way to achieve the unification of gravity and other gauge interactions, in the
strict sense defined above, is to enlarge the internal spaces from four to N dimensions. For
example, it was proposed in [1] that gravity could be unified with an SO(10) GUT in the
group SO(13, 1), which contains the local Lorentz generators and the SO(10) generators as
commuting subalgebras.

In the present work, we begin to discuss this unification mechanism from the bottom up,
starting from the weak interactions, rather than postulating from the outset what the unified

4 Because in the vierbein formulation we are used to maintaining explicit invariance under the local Lorentz
transformations, the statement that the local Lorentz invariance is broken spontaneously may cause some confusion.
The fact is that gauge symmetries are never broken: in the Higgs phenomenon it is the choice of the unitary gauge
that breaks the gauge invariance, but we are free to chose any other gauge if we want to. The physical meaning of the
statement that ‘the gauge symmetry is broken’ is that the gauge bosons are massive; in the gravitational case, this is
consistent with the fact that at low energy the connection is not an independent variable.
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gauge group has to be. This means identifying the local Lorentz gauge group of gravity and
the local isospin gauge group of the weak interactions as commuting subgroups in a unifying
group. The direction is clearly indicated by the quantum numbers of the SM fermions. We
shall see that if we consider only chiral spinors of a single handedness, it is indeed possible to
achieve this goal with the group SO(4, C). Since this group is not simple, one may object that
this is not a true unification. However, we can define the representations and the action in such
a way that the theory is invariant under a discrete Z2 group that interchanges the weak and
gravitational interactions. In this sense one has a symmetric treatment of these interactions,
ready for extension to truly unified groups. The manifest asymmetry that we see in the real
world can be attributed to a single symmetry breaking phenomenon, occurring near the Planck
scale, which also gives mass to the gravitational connection.

There are at least two different ways in which this scheme can be enlarged to account for
massive fermions. One of them is based on the notion of ‘algebraic spinors’ and Clifford
algebras. In this case, the unifying group of the gravitational and weak interactions is
GL(4, C). This approach is developed in [20]. In the other case the unifying group is
SO(7, C), and further unification with the strong interactions leads to the group SO(13, C).
This is closer to the original work in [1].

The approach to unification described in this work fits in the general framework of ‘gauge
theories of gravity’, where the connection on spacetime plays a more prominent role than
in ordinary general relativity. We refer to [6] for an extensive review of older work in this
direction. Although we shall not use it explicitly, the reformulation of general relativity in
terms of Ashtekar variables, which emphasizes the role of the selfdual part of the connection,
is close in spirit to this work. We refer to [4] for a previous look at the standard model from
this point of view. In addition to [1], the symmetry breaking aspects of gravity have also
been studied in [7, 8]. In the recent literature, one also finds reference to a different form
of the gravitational Higgs phenomenon, where diffeomorphisms are broken (rather than local
frame rotations) and the graviton is given a mass (rather than the connection) [9, 10, 19]. This
alternative Higgs phenomenon is not related to unification.

This paper is organized as follows. In section 2 we will discuss a simplified world where
only fermions of a given chirality are present. If the fermions are left-handed, they couple
only to the selfdual part of the Lorentz connection. We will then identify the antiselfdual
component of the connection with the weak gauge fields. In section 3 we write an action
functional for the fermions that make sense also in a symmetric phase, and we show how
it reduces to the familiar form in the ‘broken’ phase. The same is done for the gauge and
gravitational degrees of freedom in section 4. In section 5 we discuss more realistic extensions
where fermions of both chiralities are present, and in section 6 we briefly discuss the resulting
scenarios for including strong interactions. In section 7 we discuss the status of the global
Lorentz invariance and the way in which the conflict with the Coleman–Mandula theorem [3]
is avoided. Section 8 contains concluding comments.

2. A simple chiral world

The most striking property of the SM is that all fermions are chiral (Weyl) spinors with respect
to the Lorentz transformations and either singlets or Weyl spinors with respect to the weak
gauge group SU(2)L. In this section, we shall consider a simplified world where all fermions
are massless and the weak singlets are absent. Furthermore, we ignore strong interactions and
consider only one weak (left) doublet

ψL = (νL eL).

All other doublets can be treated in the same way.

3
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The central observation is as follows. Because these fields are complex, they automatically
carry a representation of the complexified Lorentz and weak groups. The algebra of the
complexified Lorentz group SO(3, 1, C) consists of real linear combinations of the rotation
generators Lj , the boost generators Kj and their purely imaginary counterparts iLj and
iKj . In the case of the chiral fermion fields, the physical rotations and boosts are realized
by the generators M+

j = Lj + iKj and iM+
j , respectively, which together generate a group

SL(2, C)+. The generators M−
j = Lj − iKj of SO(3, 1, C) commute with M+

j and can
therefore be identified with physical operations on spinors that have nothing to do with the
Lorentz transformations. In our simplified model, we will identify SL(2, C)+ with the Lorentz
group, and the group generated by the M−

j with the weak isospin gauge group SU(2)L. The
generators iM−

j are related to the weak isospin generators in the same way as the boosts are
related to the rotations, therefore we will call them ‘isoboosts’, and we will call the group
SL(2, C)− generated by M−

j and iM−
j the ‘isolorentz group’. It is just the complexification

of the isospin group. The isoboosts are not symmetries of the world and we will discuss their
fate later on. The whole group SO(3, 1, C) ≡ SO(4, C) = SL(2, C)+ × SL(2, C)−, which
contains both the Lorentz and isolorentz transformations, will be called the ‘gravi-weak’
group.

To make this more explicit, we can arrange the components of ψL as a 2×2 matrix whose
columns are (left) chiral spinors under the Lorentz group and whose rows are chiral spinors
under the weak group:

ψL =
(

ν1
L e1

L

ν2
L e2

L

)
. (5)

The Lorentz group acts on this matrix by multiplication from the left and the isolorentz
group acts by transposed multiplication from the right (note that this is called mathematically
a left action).

The field ψL is therefore a bispinor: it carries a bi-index (Aα), the first acted upon by the
Lorentz and the second by the isolorentz transformations. It can also be seen as a vector of
the gravi-weak group,

ψL
a = σ̂ a

AαψL
Aα, ψL

Aα = σ̂ Aα
a ψL

a, (6)

where a = 1, 2, 3, 4, σ̂ Aα
a are the van der Waerden symbols: σ̂j = σj (j = 1, 2, 3) are the

Pauli matrices and σ̂4 = 14. The matrices σ̂ a
Aα are their ‘inverses’.

In this notation, the Lorentz and isolorentz groups act on ψL with the following generators:

Lorentz : M+
j = σj ⊗ 12 ≡ σj

A
Bδα

β , (7)

Isolorentz : M−
j = 12 ⊗ σj ≡ δA

Bσj
α
β. (8)

While this terminology may sound unfamiliar, all that we have described are the standard
transformation properties of a massless fermion doublet. However, reformulating things in
this way is suggestive of a form of unification of the gravitational and weak interactions, with
the gravi-weak group as unifying group. The gravi-weak group is the direct product of the
Lorentz and isolorentz transformations, and therefore it may seem that no true unification
has been achieved in this way. However, it is both mathematically and physically different
to have a gauge theory of the group SO(4, C), with a single coupling constant, and of the
group SL(2, C) × SL(2, C), which in general has two. In the following, we will investigate
the possible existence of a symmetric phase of the theory where the gravi-weak invariance is
manifest, and of a Higgs phase where it is broken. The world as we know it will obviously
have to be identified with the latter.
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We conclude this section observing that the preceding discussion can be repeated word
by word inverting the roles of left and right. One would then have a simplified chiral world
where the only matter is represented by massless, right-handed leptons:

R = (νR eR).

In this case, the group SO(3, 1, C) contains the Lorentz transformations, generated by M−
j

and iM−
j , and the isolorentz group contains the right-weak gauge transformations M+

j . Until
we address massive fermions, in the following two sections we will continue discussing the
case of left fermions only.

3. The fermionic action

To motivate what follows, we first recall the way in which one writes the action of chiral
fermions coupled to gravity (not unified with other gauge fields), allowing for possibly
degenerate soldering form θm

µ. We begin by noting that the soldering form carries the
fundamental (vector) representation of the local Lorentz group, which is isomorphic to the
tensor product of a spinor and a conjugate spinor representation. We shall use indices A,B, . . .

for the spinor representation and primed indices A′, B ′, . . . for the conjugate representation.
The isomorphism is given by the van der Waerden symbols σ̂ A′A

m . It is sometimes convenient
to think of the soldering form as the bispinor-valued one-form

θAA′ = θAA′
µdxµ = σ̂ AA′

m θm
µdxµ. (9)

The fermion action must contain a spinor, a conjugate spinor and one derivative; the soldering
form is the right object to covariantly contract the indices carried by these objects. The
fermionic kinetic term is written as∫

d4x|θ |ψ∗A′
θ

µ

A′ADµψA. (10)

Here, DµψA = ∂µψA + ωµ
A

BψB is the Lorentz covariant derivative, θ
µ

A′A is the inverse
soldering form and |θ | is its determinant.

In order to have an action that makes sense also for degenerate soldering form, one writes∫
ψ∗A′

DψA ∧θB ′B ∧θC ′C ∧θD′Dε(A′A)(B ′B)(C ′C)(D′D), (11)

where

ε(A′A)(B ′B)(C ′C)(D′D) = σ̂ m
A′Aσ̂ n

B ′Bσ̂ r
C ′Cσ̂ s

D′Dεmnrs

is antisymmetric in the exchanges of the couples of indices (A′A), (B ′B), etc. Assuming that
θ is nondegenerate, equation (11) reduces to (10).

We want to generalize the previous discussion to write an action for fermion fields coupled
to weak gauge fields and gravity, in a way that is invariant under gravi-weak transformations.
In the previous section we learned that the fermions can be represented as gravi-weak vectors
ψa and their conjugates ψ∗ā , while the gravi-weak gauge field, in the representation carried
by the fermions, is Aµ

a
b. Since the gravi-weak group is gauged, we will need first of all the

corresponding covariant derivative

Dµψa
L = ∂µψa

L + Aµ
a
bψ

b
L. (12)

The gauge field Aµ
a
b can be decomposed in gravitational (selfdual) and weak (antiselfdual)

parts with generators (7) and (8). The (complex) gravitational gauge field will be denoted ω
j
µ,

5
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while the antiselfdual gauge fields can be further split in real part, the isospin gauge field W
j
µ,

and imaginary part, the isoboosts gauge field denoted K
j
µ:

DµψL = [
∂µ + ωj

µM
(+)
j +

(
Wj

µ + iKj
µ

)
M

(−)
j

]
ψL. (13)

We must then define the variable describing the gravitational field. Following the argument
that leads to (10), we need a generalized soldering form θ āb = θ āb

µdxµ whose components
can be used to invariantly contract the fermion bilinear ψL

∗āψL
b to the covariant derivative

(13).
Before proceeding further, we shall introduce a little more notation. We will use indices

m, n, . . . for the vector representation of the (Lorentz) group SL(2, C)+ and u, v, . . . for the
vector representation of the (isolorentz) group SL(2, C)−. These representations are again
connected to the corresponding spinor representations by the van der Waerden symbols:

V nσ̂A′A
n = V A′A; V uσ̂ α′α

u = V α′α. (14)

Using equation (6) we can convert the pair of indices āa of the generalized soldering form to
a pair of bi-spinor indices: θA′α′Aα = σ̂ A′α′

ā σ̂ Aα
a θ āa . We can then transform the pair of indices

A′A to a Lorentz vector index and the pair α′α to an isolorentz vector index. In this way, the
generalized soldering form can also be written as a one-form with a Lorentz and an isolorentz
vector index: θmu = σ̂ m

A′Aσ̂ u
α′αθA′α′Aα .

We can now generalize (11) and write a fermion kinetic term as

Sψ =
∫

ψL
∗āDψa

L ∧θ b̄b ∧θ c̄c ∧θ d̄dε(āa)(b̄b)(c̄c)(d̄d), (15)

where ε(āa)(b̄b)(c̄c)(d̄d) is an SO(4, C) invariant tensor, totally antisymmetric under interchanges
of pairs of indices (āa), (b̄b), (c̄c), (d̄d). As we did above with θmu

µ , we can convert all the
indices on this tensor to pairs of vector indices. In this notation, we chose it as follows:

ε(mu)(nv)(rw)(sz) = εmnrs(ηuvηwz + ηuwηvz + ηuzηvw) + (ηmnηrs + ηmrηns + ηmsηnr)εuvwz. (16)

If the combinations in the two lines on the rhs had arbitrary coefficients, this would still have
the desired invariance and antisymmetry properties; the particular combination (16) is the only
one that is in addition invariant under the Z2 group exchanging the gravitational and weak
sectors.

The fermionic action (15) is built without using a metric, and therefore makes sense also in
the symmetric phase. As long as θ āa has zero VEV, it does not describe a standard propagating
(gaussian) theory, because it only contains interaction terms. The action is invariant under
diffeomorphisms x ′(x) and gravi-weak gauge transformations Sa

b, under which the fields
transform as

ψL → SψL, θLµ → �ν
µS†θLνS, (17)

where �ν
µ = dxν

dx ′µ and the gravi-weak indices have been suppressed.
The ordinary low-energy world is described by a background geometry that corresponds

to Minkowski space and the flat Lorentz and isolorentz connections. Both the Lorentz and
isoboost invariances must be broken at some high scale, because neither of these gauge
fields appears in the low-energy spectrum. In the broken phase of the theory, at energies
above the electroweak scale, the fermions can be treated as massless fields. The background
geometry must thus select a timelike direction in the vector representations of the isolorentz
algebra, while providing a soldering of the vector representation of the Lorentz algebra to
the tangent spaces of spacetime. Selecting the timelike isolorentz direction along the fourth
axis, the VEV corresponds to the choice

〈
θm4
µ

〉 = Mδm
µ and

〈
θmu
µ

〉 = 0 for u = 1, 2, 3,
where M is a mass parameter. Translating back to the bispinor indices, this corresponds to

6
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〈θµ〉 = Mδµ
m(σ̂m⊗12). In order to describe in a covariant fashion also the non-flat geometries

with weak curvature, we will consider backgrounds of the form

〈θµ〉 = Mem
µ(σ̂m ⊗ 12). (18)

The dimensionless fields eµ
m are now ordinary, real vierbeins connecting the tangent space

index µ to the internal vector index m. Moreover, using the SO(4, C) invariant product δab,
one can define a metric gµν = θ āa

µ θ b̄b
ν δabδāb̄, that using the VEV (18) is determined by the

vierbeins as in equation (2):

gµν = em
µen

νηmn. (19)

Note that the VEV (18) has selected SL(2, C)+ for soldering with the spacetime
transformations, and accordingly the signature of the resulting metric is minkowskian.

This VEV breaks the original group in the correct way to provide the global Lorentz
and local weak (isospin) gauge invariance: the (+) part of the SO(4, C), corresponding to
the Lorentz generators (7), and the imaginary part of the (−) generators (the isoboosts) do
not leave (18) invariant, and therefore are broken. Thus, the only unbroken subgroup of the
original gauge group is the weak SU(2)L. In addition, the special VEV θm

µ = δm
µ is invariant

under the global diagonal SO(3, 1) defined by

S = D( 1
2 ,0)(�), (20)

where S and � are as in (17). This is the usual Lorentz group and we shall discuss its role in
section 7.

At low energy the massive degrees of freedom can be ignored and the covariant derivative
(13) reduces to

DµψL = (
∂µ + ωµ

i(σi ⊗ 12) + Wµ
i(12 ⊗ σi)

)
ψL, (21)

where now ω is the VEV of the spin connection constructed from em
µ. It vanishes on a

flat geometry, while in curved space it coincides with the Levi-Civita connection in selfdual
language. Apart from strong interactions, this is the covariant derivative of left-handed
fermions in the SM coupled to gravity [4]. Correspondingly, when we insert the VEV (18) in
the fermionic action (15), this produces the ordinary kinetic terms for an SU(2)L doublet of
canonically normalized spinors L = M3/2ψL:

Sψ =
∫

∗A′α′
L DAα

L σ̂m
A′Aδα′α ∧en ∧er ∧esεmnrs =

∫
d4x|e|eµ

m∗α
L σ̂mDµα

L,

where we have suppressed the SL(2, C) Lorentz indices in the last expression. Note the
emergence of the SU(2) metric δα′α from the antisymmetric tensor (16).

4. Gauge and gravity dynamics

We now describe the dynamics of the gauge and gravity degrees of freedom. As already
mentioned, among the fluctuations, the Lorentz and isoboost gauge fields should have high
masses, as they are not observed. The isospin gauge fields on the other hand should be
effectively massless (until one introduces the mechanism breaking the weak interactions) and
in addition, there must be a massless graviton. These degrees of freedom must emerge from a
gravi-weak-invariant action in the broken phase. The action should be written in the absence
of a metric, and this can be done in the first-order formalism [5]. It turns out that the possible
terms that one may write are quite constrained by the gravi-weak symmetry.

The action will involve the gravi-weak-covariant combinations of derivatives of θ and A:
the generalized torsion two-form

�āa
µν = ∂µθ āa

ν − ∂νθ
āa

µ + Āµ
ā
b̄θ

b̄a
ν + Aµ

a
bθ

āb
ν − Āν

ā
b̄θ

b̄a
µ − Aν

a
bθ

āb
µ (22)

7
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and the curvature two-form

Rµν
āab̄b = Rab

µνδ
āb̄ + R̄āb̄

µνδ
ab (23)

Rµν
a
b = ∂µAν

a
b − ∂νAµ

a
b + Aµ

a
cAν

c
b − Aν

a
cAµ

c
b. (24)

First, we discuss the generalized Palatini action, which contains terms linear in curvature
and terms quadratic in torsion:

SR1 = g1

16π

∫
Rāab̄b ∧θ c̄c ∧θ d̄dε(āa)(b̄b)(c̄c)(d̄d) (25)

S� = a1

∫ [
t āab̄b
ēe �ēe + (t2)θ āa ∧θ b̄b

]
∧θ c̄c ∧θ d̄dε(āa)(b̄b)(c̄c)(d̄d), (26)

where t āab̄b
ēe are zero-form auxiliary fields reproducing the components of �ēe.

In deriving the equations of motion (EOMs), it is convenient to split the connection and
curvature in the selfdual and antiselfdual parts, converting the gravi-weak indices (āa) to
the Lorentz and isolorentz indices (mu). Then, the EOMs for the isolorentz (antiselfdual)
connection are identically satisfied when one inserts the VEV (18), while the equation for the
Lorentz (selfdual) connection imply that the standard gravitational torsion vanishes:

�m
µν ≡ ∂µem

ν − ∂νe
m

µ + ωµ
m

ne
n
ν + ωµ

m
ne

n
µ = 0. (27)

This fixes ωµ
m

n to be the Levi-Civita connection of em
µ . On the other hand, the equation relative

to θmu
µ produces the Einstein equations for the background em

µ . Thus, if em
µ is a solution of

Einstein’s equations in vacuum, then (18) together with the assumption of vanishing fermion
fields yields a solution of the equations of motion of this theory.

One can understand better the dynamics of the gauge fields by inserting the VEV (18) in
the action and neglecting interaction terms. The generalized actions (25) and (26) become

SR1 + S� →
∫

d4x
√

g

[
g1

16π
M2R + 4a1M

2
(
�m

µν�
µν
m + 10Kj

µK
µ

j

)]
. (28)

Thus, one should identify the Planck mass as M2
PL = g1M

2. Then, this shows that the isoboost
gauge fields K

j
µ acquire mass at the Planck scale. As discussed in the introduction, also the

spin-connection ω
j
µ, which is contained in �m

µν and R, becomes massive. This can be seen
most clearly for the constant background em

µ = δm
µ ; in curved backgrounds, it will generate

masses for the fluctuations of ω around the Levi-Civita connection of em
µ . The W boson drops

out of both terms because it commutes with the VEV and thus it remains massless.
Next, one can introduce an action quadratic in gravi-weak curvature:

SR2 = 1

g2
2

∫ [
rāab̄b
ēef̄ f

Rēef̄ f + (r2)θ āa ∧θ b̄b

]
∧θ c̄c ∧θ d̄dε(āa)(b̄b)(c̄c)(d̄d). (29)

This modifies the equations for the VEV, but flat space is still a solution. Inserting the VEV
(18) and eliminating the rāab̄b

ēef̄ f
auxiliary fields, this action reduces to a term quadratic in the

gravitational curvature plus the standard Yang–Mills actions for the weak gauge fields:

SR2 → 1

g2
2

∫
d4x

√
g
(−Rj

µνR
µν

j − Wj
µνW

µν

j − Kj
µνK

µν

j

)
. (30)

Above the breaking scale, the gravi-weak symmetry manifests itself in the equality of the
coefficients of all the three terms, while below the Planck scale the isoboosts and the spin
connection are massive and decoupled. Due to the vanishing torsion, the R

j
µνR

µν

j term contains
higher derivatives for the graviton; its effect is however negligible relative to the Hilbert term
at our energies: the phenomenological limits on its strength are very loose [11].
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One should point out that, as in the standard Palatini gravity, the equations also admit the
solution 〈θ〉 = 0. This corresponds to an ‘unbroken’ phase in which there is no distinction
between gravitational and weak interactions. Since the metric is quadratic in θ , one expects
this symmetric phase to be also ‘topological’. The dynamical mechanism which favors the
phase with nondegenerate metric is not well understood and will not be discussed here. Some
attempts along these lines were made in [1, 7, 8].

In the broken phase, the comparison between the strength of gravitational and weak
interactions has to be based on the effective Newton constant k2/g1M

2, where k is the energy
scale. At the current available energies, this effective coupling is extremely small, while near
the Planck scale it becomes comparable to the other couplings. Since all the other gauge
interactions seem to converge to order-one couplings at a Grand Unification scale quite near
the Planck scale, this can be taken as a hint toward the complete unification of all gauge and
gravitational interactions. The present model where the weak and gravitational interactions
are treated on equal footing is a step toward this direction.

Let us discuss the low-energy spectrum of this theory. The gravi-weak fermions ψL
a

contain the SM fermions and remain massless in this chiral world. In a nonchiral world, they
should receive mass at the scale of electroweak breaking. As discussed above, among the
six complex gravi-weak gauge fields the three ‘isoboosts’ and the six spin connection fields
correspond to broken generators and acquire a Planck mass. Only the three W gauge fields
remain massless in the broken phase. They should become massive at the lower energy scale
of SU(2)L breaking.

The generalized soldering field θ āa
µ gives rise to interesting structure in the broken phase.

The full field has 64 real components that can be decomposed as follows:

θµ = Mem
µ(σ̂m ⊗ 12) + hm4

µ (σ̂m ⊗ 12) + �mj
µ (σ̂m ⊗ σj ). (31)

The first term on the rhs is the background, and h and � are fluctuations. These can be
rewritten, using the VEV em

µ , as

hµν = en
νh

n
µ, �̃j

µν = en
ν�

nj
µ . (32)

The fluctuations around the background consist thus of the 16-components field hµν , and three
new (16 component) tensor fields �̃

j
µν , one for each value of the SU(2)L index j . Since nine

generators of the gravi-weak group are broken (corresponding to spin, boosts and isoboosts),
nine of these fields can be fixed by the choice of unitary gauge. The natural choices are the
six antisymmetric components of hµν and the three traces �̃

µj
µ . In this gauge the remaining

degrees of freedom are the (ten) symmetric components of h, which after proper treatment
of the diffeomorphism invariance become the physical graviton, and the (3 × 15) traceless
components of �̃

j
µν . These latter fields can also be decomposed in the antisymmetric (six

components) and symmetric traceless (nine components) fields, that are copies of a (traceless)
graviton. The emergence of these copies of tensor fields was noted in [12] where the gauge
group of gravity was extended to a generic SL(2N,C). In agreement with that analysis, one
can see that the antisymmetric component of �̃ does not get a kinetic term from the generalized
EH term (25).

The symmetric part of �̃
j
µν represents new tensor particles that constitute an SU(2) isospin

triplet, therefore they have standard weak interactions and below the electroweak breaking
scale they will consist of one neutral and two charged components. However all the direct
couplings of �̃µν with matter are Planck-suppressed, as for the graviton, because the common
kinetic term is normalized with M2.

Since these charged spin two particles are not observed at low energy, one can suppose
that they have escaped detection because their mass is above the electroweak scale. While

9



J. Phys. A: Math. Theor. 41 (2008) 075405 F Nesti and R Percacci

their mass could only be predicted in a complete model, some useful observations can still be
made. First, one can write a SU(2)L gauge-invariant mass like tr(�̃j �̃j ), which at first sight
could be taken as large as the Planck mass. However, such a mass is actually the part of the
expansion of the cosmological term around the background: 5

λ

∫
θ āa∧θ b̄b∧θ c̄c∧θ d̄dε(āa)(b̄b)(c̄c)(d̄d) = λM4

∫
d4x|e| + λM2

∫
d4x|e|tr(�̃j �̃j ) + · · · . (33)

It is therefore observationally constrained to be very small, because it is connected with the
cosmological constant.

On the other hand, a different mass term may arise from the coupling with a Higgs field,
that would give mass to �̃ but not to the graviton, as was described in [12]. By this argument
one may expect �̃ to have mass in the weak range. It is then interesting to note that if its mass
were slightly above the weak scale, for example m�̃ = 300 GeV, this particle would probably
have escaped detection at LEP, being too heavy to be produced (in pair) and having a small
decay rate (mainly through Higgs bosons). It should nevertheless be produced at LHC by the
standard Drell–Yan gauge interactions qq → W → �̃�̃ at energy above 2m�̃, and provide
a nice signal of this theory. It is also interesting to speculate that depending on the model
the lightest component of this triplet (usually the neutral one) may be stable and only weakly
interacting, therefore being a candidate for dark matter. It would be interesting to carry out
such an analysis in a complete model including the electroweak breaking sector.

5. Models with both chiralities

Even though in the SM left- and right-handed fermions occur in different representations of the
gauge group, there are many unified models where at a more basic level the symmetry between
left and right is restored. The minimal such models were based on the left–right symmetry
[14, 15] and the Pati–Salam partial unification SU(2)L × SU(2)R × SU(4) [16]. In these
models, the hypercharge U(1) group is enlarged to a group SU(2)R acting on the right-handed
fermions in the same way as the weak SU(2)L acts on the left-handed ones. Then from
the point of view of the Lorentz and weak groups, the fermions occur in the representations
(2, 2) and (2, 2) of SL(2, C) × SU(2)L and SL(2, C) × SU(2)R , respectively (here we label
representations by their dimension).

This suggests a first possible model, where we take two of the toy models considered in
the previous section, with opposite chiralities, and join them to construct a semirealistic model
of gravi-weak unification where fermions can have masses. Because infinitesimal Lorentz
transformations are identified in one case with M+

j generators and in the other case with M−
j ,

we have to assume independent Lorentz groups for the two chiralities. Thus we start from
a group SO(4, C)L × SO(4, C)R , where the left gravi-weak group SO(4, C)L contains the
left-Lorentz group SL(2, C)L and the weak gauge group SU(2)L, while the right-gravi-weak
group SO(4, C)R contains the right-Lorentz group SL(2, C)R and the internal gauge group
SU(2)R . In the low-energy broken phase, the physical Lorentz group will have to be identified
with the diagonal subgroup of SL(2, C)L × SL(2, C)R .

In this model, every massive fermion is realized by means of two fields L,R: a
complex SO(4, C)L-vector (SO(4, C)R-singlet) and a SO(4, C)R-vector (SO(4, C)L-singlet).
When decomposed into representations of their Lorentz and internal subgroups, they become
the desired left-handed doublet of SU(2)L plus right-handed doublet of SU(2)R .

The breaking of the two SO(4, C)L,R groups to the respective SU(2)L,R subgroups follows
the scheme described in the previous sections, using separate generalized soldering forms θ āa

Lµ

5 Since �̃j are traceless, this mass term is equivalent to the standard Pauli–Fierz mass for spin-two fields [13].
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and θ b̄b
Rµ. We assume that both VEVs have the form (18), so that they define the same

background metric. Then, since the diffeomorphism group is unique, equation (20) written
separately for the left and right transformations, will define a single residual global SO(3, 1)

Lorentz group.6

The presence of two generalized soldering forms θL and θR leads also to two graviton
fields. One of these is the standard massless graviton that is massless, thanks to diffeomorphism
invariance, the other graviton may be naturally massive as discussed, e.g., in [17–19].
Likewise, also the fields �̃ will be doubled, and thus one has two triplet tensor fields �̃L

and �̃R of the left and right isospin, respectively.
The appearance of two independent gravi-weak groups may be somewhat unpleasant. It

would be more elegant to have from the outset a single copy of SL(2, C) to be identified with
the Lorentz transformations. Because the representations are complex, we can think of the
real Lorentz group SL(2, C) as the complexification of the ‘spin’ group SU(2)S generated by
M+

j . Then, we must look for representations of SU(2)S ×SU(2)L ×SU(2)R . The left-handed

fermions are in the representation (2, 2, 1) while the right-handed fermions are in (2, 1, 2).
The (chiral spinor) representation 8 of SO(7) decomposes precisely into (2, 2, 1) ⊕ (2, 1, 2).
Thus, a massive lepton doublet can be neatly accommodated into a single spinor representation
of SO(7, C), by including both the left and right (conjugated) fermions in the same multiplet.

In this model, the generalized soldering form needed to write the fermionic action will
have two spinor indices in the 8 instead of two vector indices: θα′α

µ . Since in SO(7, C) one

has 8 × 8 = 64herm ⊕ 64antiherm, one can take an Hermitian soldering form consisting of 64
real fields (for each spacetime index µ). Similarly to the simple chiral world described above,
its VEV should be em

µ (σ̂m ⊗ 12 ⊗ 12), that leaves unbroken the three correct symmetries: the
global Lorentz group plus the two local gauge groups SU(2)L, SU(2)R . The fluctuations of
θα′α
µ around this VEV contains 220 fields: the graviton hµν (10 components), two traceless

tensor fields that are triplets under the two isospin groups, �̃
j

µνL, �̃
j

µνR (45 components each)

and a similar tensor field that is triplet under both left and right isospin groups �̃
jLjR
µν (120

components). All these new tensor particles, charged under SU(2)L or SU(2)R , should take
mass at the breaking of these symmetries.

Each of the two models described above has advantages and disadvantages. The model
based on SO(4, C)L × SO(4, C)R has only 12 complex generators (whereas the model based
on SO(7, C) has 21 complex generators), and is therefore the minimal model that treats gravity
and the weak force in a symmetric fashion. However, the gauge group is not simple. The model
based on SO(7, C) has a simple gauge group and each fermion doublet forms an irreducible
representation. Although it is considerably larger than the previous group, it is the minimal
simple group that contains both the Lorentz transformations and the left and right isospin
groups such that weak doublets are in one irreducible representation.

We conclude this section by commenting on the possible origin of the electroweak
breaking. While this part of the analysis should be carried on in a specific model including the
hypercharge and the strong interactions, we find it useful to sketch the various possibilities.
As is well known, the Higgs fields of the SM is an isospin doublet, Lorentz singlet. Since this
is not a Z2-symmetric representation, the Higgs should be accompanied by the corresponding
partner or embedded in a suitable larger representation.

From the point of view of group theory, the simplest possibility would be the analog of a
Dirac spinor. This is the sum of a ψA field, that is a doublet of Lorentz, i.e. a Weyl spinor, and
a φα field that is a doublet of isolorentz, i.e. an isospin doublet. The latter could play the role

6 With different left and right VEVs this would generally not be the case, and the Lorentz invariance may be broken
as in [19].
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of the Higgs, and its VEV would lead to the correct breaking of isospin, without breaking the
Lorentz invariance. The VEV would effectively break the Z2 symmetry, and may follow from
a mechanism similar to the one leading to spontaneous breaking of LR-parity [15]. It is not
clear however how a symmetry between a scalar doublet and a spinor singlet could be made
consistent with the spin–statistics relation.

The SU(2)L symmetry could of course be broken also by the VEV of other fields. One
example is a ‘gravi-weak adjoint’ representation �a

b , with VEV in the isolorentz sector only:
�̄(−)j (12 ⊗ σj ). This is equivalent to a ‘triplet breaking’. A similar breaking could be due to
an additional VEV of the soldering form, in the �̃

j
µν components (see (31)). In general such a

VEV would break the Lorentz symmetry: for example, �̃
j

00 breaks the boosts transformations
that may be marginally allowed, while �̃

j

02 would break the rotations which is undesirable. A
special possibility would be if �̃

j
µν were proportional to the background metric gµν for all j ,

i.e.
〈
�̃

j
µν

〉 = gµνφ̄
j , that amounts to have a VEV for the traces of �̃j . In this case, it would

not break the Lorentz and would behave just as the scalar triplet �a
b just described.

A more promising possibility would be to introduce, in one of the models presented above,
a field transforming under both the left and right SU(2) weak groups, that would contain two
left isospin doublets [14, 15]. Since the full electroweak breaking is intimately linked also to
the breaking of B − L or unified color groups, we shall defer a more complete analysis to a
future work, and turn to the inclusion of strong interactions.

6. Including strong interactions

The fermion quantum numbers strongly suggest that the color SU(3) group, together with
the U(1) group generated by B − L, forms the real group SU(4) ≈ SO(6) [16]. Let us then
discuss briefly the inclusion of this extended color group in the models discussed above.

In the SO(4, C)L × SO(4, C)R case, it is natural to try to unify first the two groups in
SO(8, C). Indeed, the two spinors (4, 1) ⊕ (1, 4) can be obtained from the reduction of the
8 (vector) of SO(8, C). Then, the fermions of one SM family should be in the 8 (vector)
of SO(8, C) and in the 4 (chiral spinor) of SO(6) ≈ SU(4). Unfortunately with orthogonal
groups it is always impossible to obtain a product of the vector and spinor representations
from the reduction of irreducible representations of a larger group, and thus it seems that
having decided in the first place to introduce the gravi-weak orthogonal group SO(4, C) we
have precluded the possibility of unifying it with the strong interactions in a simple group7.

Instead, the SO(4, C)L × SO(4, C)R model points in the direction of the framework
described in [20] where, using Clifford algebras, this unification is achieved in a different and
geometrical way. There the SU(4) groups are also duplicated as SU(4)L ×SU(4)R and, in the
symmetric phase, the left and right sectors have completely independent degrees of freedom,
both in the gauge and in the gravitational sectors. In the broken phase, as the gravi-weak
groups are broken and reduced to the single Lorentz group, also the two color groups should
be broken to a diagonal SU(4) and then to the color SU(3).

The approach based on SO(7, C) allows the complete unification in a simple group but
suffers from another problem. Here a SM family is contained in the representation (8, 4)

of SO(7, C) × SO(6, C), and under the inclusion SO(7, C) × SO(6, C) ⊂ SO(13, C), one
can indeed obtain the (8, 4) from the reduction of the (spinor) 64 → (8, 4) ⊕ (8, 4). The
breaking SO(7, C) → SL(2, C) × SU(2)L × SU(2)R , leads to the further decomposition
(8, 4) → (2, 2, 1, 4) ⊕ (2, 1, 2, 4), showing explicitly that this is exactly a family of
the SM. However, the decomposition of the 64 contains also a so-called mirror family,

7 The situation may change by looking for embeddings in non-orthogonal groups.
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(8, 4) → (2, 1, 2, 4) ⊕ (2, 2, 1, 4), that should be disposed off somehow. The problem
of eliminating mirror fermions has no simple solution, mainly because one cannot give a
gauge-invariant mass to the undesired chiral SU(2) doublets [21]: their mass would break the
weak symmetry and thus it cannot be higher than the electroweak scale.

This approach is very close in spirit to the original SO(13, 1) unified theory [1], where the
chiral spinor (64) of SO(13, 1) decomposes under SO(3, 1) × SO(10) into (2, 16) ⊕ (2, 16),
and the (2, 16) representation consists of Weyl mirror fermions.

7. Avoiding Coleman–Mandula

The Coleman–Mandula theorem [3] states that under certain natural hypotheses (which are very
likely to hold in the real world) the symmetry group of the S-matrix must be a direct product
of the Lorentz group and an internal symmetry. It is usually interpreted as a no-go theorem,
forbidding a nontrivial mixing of spacetime and internal symmetries. Supersymmetry and
certain quantum groups famously manage to avoid the theorem: in these cases the symmetry
is not an ordinary Lie group, as assumed by the theorem. The proposal for unification discussed
in the previous sections is based on ordinary Lie groups and thus superficially may seem to
violate the theorem. We will discuss here why this is not the case.

To explain this point, we have to discuss first the fate of the Lorentz group in the proposed
unified models. It is important to distinguish the local Lorentz transformations acting on
the internal spaces, which are gauge transformations and are present independently of the
background, from the global Lorentz transformations which are only defined as the subgroup
of diffeomorphisms x ′(x) that leave the background (Minkowski) metric invariant. We can
then address the question whether these transformations are broken or not. The ‘unitary
gauge’ choice (18), with em

µ = δm
µ breaks both the SL(2, C)+ local Lorentz and these global

Lorentz transformations. However, as discussed in section 3, the VEV is invariant when a
global Lorentz transformation � is compensated by an internal transformation with parameter
S = D( 1

2 ,0)(�). It is this global Lorentz symmetry group that enters into a discussion of the
Coleman–Mandula theorem.

One of the hypotheses of the Coleman–Mandula theorem is the existence of a Minkowski
metric. Thus, from the point of view of the theory described above, this means that it can only
apply to the ‘broken’ phase, more precisely to the special case when the ground state is flat
space. But we have shown that in the broken phase the residual symmetries are precisely a
global Lorentz symmetry and a local internal symmetry. This is in complete agreement with
the Coleman–Mandula theorem.

The greater symmetry of the unified theory would only manifest itself in the situation
where the soldering form vanishes, which would correspond to a symmetric ‘topological’ phase
of the theory; in that phase there would be no metric on spacetime, let alone a Minkowski
metric, and the hypotheses of the Coleman–Mandula theorem would not apply. This argument
applies also to other theories such as the one discussed in [1].

The main lesson to be drawn from this discussion is therefore that there need not be
a contradiction between the Coleman–Mandula theorem and theories that mix internal and
spacetime transformations: the theorem does not forbid such a nontrivial mixing, as long as it
manifests itself only in a phase with no metric.

8. Discussion and conclusions

There have been many attempts at unifying gravity with the other interactions [22]. The one we
discussed here generalizes in the most straightforward way the philosophy and the procedures
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that are believed to work, in particle physics, for the other interactions. We have considered
mainly the symmetry between the (left or right) weak interactions and the gravitational ones,
in a ‘gravi-weak’ group SO(4, C). The unification of spin and isospin transformations is very
natural in view of the quantum numbers of the fermion fields8. Since the group SO(4, C) is
not simple, the gauge fields associated to its commuting factors SL(2, C)+ and SL(2, C)−
could in general have different couplings, and in this sense the two interactions would not be
truly unified. In analogy to what is done in left–right-symmetric models, we have postulated
the existence of a discrete Z2 symmetry exchanging the two sectors, that would force this
unification. This symmetry can be seen as a remnant of the unification in a larger simple
group, as discussed in sections 5 and 6. Therefore, we have a unification of the gravitational
and weak interactions in the sense described in the introduction.

The gravi-weak unification requires a generalized vierbein or soldering form that naturally
acts as an order parameter. Its VEV defines the gravitational background and at the same time
selects the weak isospin group as the only unbroken gauge group. By using the soldering
form as an order parameter, we also avoid the potential obstruction provided by the Coleman–
Mandula theorem. The conditions of the theorem, in particular the existence of a metric,
are only satisfied in the broken phase, and indeed in that regime the model predicts that the
symmetry of the theory is the product of spacetime and internal symmetries.

After the symmetry breaking, the extended soldering form gives rise, in addition to the
standard graviton, also to an isospin triplet traceless tensor field. The gauge-invariant mass of
this spin-two triplet is connected with the cosmological constant and thus is constrained to be
small. On the other hand, its mass may arise from the mechanism of electroweak breaking,
leading to the interesting possibility that this particle, while having escaped detection up to
now, may be directly observed at LHC.

We have then discussed extensions of this scheme to include massive fermions, and briefly
analyzed also the inclusion of the strong interactions. At the moment there seem to be (at
least) two possible frameworks.

One is based on the use of SO(7, C) that unifies in a simple group both the left and
right isospin groups with the Lorentz group. This is the minimal simple group that can
accommodate a massive fermion in a single irreducible representation. After inclusion of the
strong interactions, this approach however suffers from the well-known problem of mirror
fermions, because only vector-like fermions are generated and the undesired chiral copy
cannot be given mass higher than the weak scale [21]. The situation is thus similar to the one
encountered in the approach originally proposed in [1], where all the interactions are unified
in a group SO(13, 1) and gravity is separated by the VEV of a soldering form. There the
multiplets of the resulting SO(10) gauge interactions always appear in vector-like couples
16+16.

A second scheme, closer in spirit to left–right theories, postulates the duplication of the
gravi-weak group in left and right copies at the most fundamental level, SO(4, C)L×SO(4, C)R .
This approach does not suffer from the problem of mirror fermions, but calls for such a
duplication also in the strong sector, SU(4)L × SU(4)R . These duplications point toward
a more geometric framework, discussed in a separate work [20], that is based on the use of
Clifford algebras.

To conclude, the bottom-up approach that motivated the present work has led to the result
that one can successfully treat the weak and gravitational interactions on equal footing. It
also showed possible ways to construct scenarios of complete unification including the strong

8 It is well known that spin and isospin degrees of freedom can mix in solitonic solutions [23]. In this work, we have
suggested that such mixing may occur at the level of fundamental degrees of freedom.
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interactions. The problems that arise are similar to the typical ones that occur in grand unified
theories; on the other hand, contrary to common belief, there seems to be no fundamental
obstacle to the unification of gravity with other gauge interactions using the familiar methods
of particle physics. We think that further exploration of these scenarios will provide novel
insight both at the fundamental and phenomenological level.
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